Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
Chem Commun (Camb) ; 60(33): 4447-4450, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38563651

RESUMO

We have developed an upconversion luminescent ratiometric nanoprobe, specifically designed for detection of biothiols with high sensitivity (∼25 nM) at the single-particle level. Using a single-particle localization and rendering method, this nanoprobe enables super-resolution imaging sensing of biothiols within a confined 22 nm space in living cells.


Assuntos
Diagnóstico por Imagem , Nanopartículas , Luminescência
2.
Nat Genet ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658793

RESUMO

Large-scale genomic variations are fundamental resources for crop genetics and breeding. Here we sequenced 1,904 genomes of broomcorn millet to an average of 40× sequencing depth and constructed a comprehensive variation map of weedy and cultivated accessions. Being one of the oldest cultivated crops, broomcorn millet has extremely low nucleotide diversity and remarkably rapid decay of linkage disequilibrium. Genome-wide association studies identified 186 loci for 12 agronomic traits. Many causative candidate genes, such as PmGW8 for grain size and PmLG1 for panicle shape, showed strong selection signatures during domestication. Weedy accessions contained many beneficial variations for the grain traits that are largely lost in cultivated accessions. Weedy and cultivated broomcorn millet have adopted different loci controlling flowering time for regional adaptation in parallel. Our study uncovers the unique population genomic features of broomcorn millet and provides an agronomically important resource for cereal crops.

3.
Nat Prod Res ; : 1-11, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498767

RESUMO

The chemical investigation of the fibrous roots of Ophiopogon japonicus afforded two new steroidal saponins, named ophiojaponin F (1) and ophiojaponin G (2), together with twelve known steroidal saponins (3-14) and ten known homoisoflavonoids (15-24). The structures of the isolated compounds were established unambiguously via spectroscopic analyses (NMR and HR-ESI-MS). Ophiojaponin F (1) is a 23-hydroxylated spirostanol saponin, and this type of steroidal saponin rarely been reported in liriopogons. All isolates were evaluated for their anti-pulmonary fibrosis activities on TGF-ß1-actived NIH3T3 cells for the first time. Among them, compounds 3, 4, 11-13, 15-19, 21 and 24 showed potential anti-pulmonary fibrosis effects with IC50 values ranging from 3.61 ± 0.86 µM to 21.33 ± 1.82 µM, and the main component ophiopogonin D (4) displayed the best activity with an IC50 value of 3.61 ± 0.86 µM. Thus, ophiopogonin D may be a potent candidate for the treatment of pulmonary fibrosis.

4.
Sci Rep ; 14(1): 6522, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499796

RESUMO

To evaluate the efficacy and nutrition of single-anastomosis duodenal-ileal bypass with sleeve gastrectomy (SADI-S) in Chinese obese patients in the first postoperative year. Clinical data of 66 obese patients who underwent SADI-S surgery at China-Japan Union Hospital of Jilin University from November 2018 to May 2022 were retrospectively collected. The weight, body mass index (BMI), percentage of excess weight loss (%EWL), and percentage of total weight loss (%TWL) were recorded at 3, 6, and 12 months after surgery. Moreover, metabolic disease remission and nutrient deficiencies were assessed at 1 year postoperatively. Overall, 66 patients (38 males and 28 females) were recruited, with a mean age of 35 (18-61) years and an average preoperative BMI of 42.94 kg/m2. Before surgery, 38 patients had type 2 diabetes mellitus (T2DM), 46 patients had hyperuricemia (HUA), 45 patients had hypertension (HTN), 35 patients had hyperlipidemia, 12 patients had hypercholesterolemia, 12 patients had hyper-low-density lipoproteinemia, and 14 patients had gastroesophageal reflux disease symptoms (GERD). All patients had undergone a DaVinci robotic or laparoscopic SADI-S surgery, and none converted to laparotomy or died. Four patients developed postoperative complications and were cured and discharged after conservative treatment or surgical treatment. At 3, 6 and 12 months, the average %EWL was 62.07 ± 26.56, 85.93 ± 27.92, and 106.65 ± 29.65%, %TWL was 22.67 ± 4.94, 32.10 ± 5.18, and 40.56 ± 7.89%, respectively. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), uric acid (UA), triglycerides (TG), blood pressure (BP), and other indexes were significantly lower after one year post-surgery compared with the preoperative period (P < 0.05). The remission rates of T2DM, HUA, HTN, hypertriglyceridemia, hypercholesterolemia, and hyper-low-density lipoproteinemia 1 year after surgery were 100, 65.2, 62.2, 94.3, 100, and100%, respectively. One year after surgery, the remission rate of GERD was 71.4% (10/14), the rate of new occurrence of GERD was 12.1% (8/66), and the overall incidence rate was 18.2% (12/66). Except for vitamin B12(vit B12), the other nutrient indexes were significantly decreased after 1 year of surgery relative to levels before surgery (P < 0.05). The deficiency rates for vitamin A (vit A), vitamin E (vit E), zinc ion (Zn), and folic acid (FA) were higher (45.5, 25.8, 24.2, and 16.7%, respectively); however, there were no related clinical symptoms. SADI-S had significant effects on weight loss and metabolic disease remission. The main nutrient deficiencies after SADI-S were vit A, vit E, Zn, and FA deficiencies. The long-term efficacy and safety of SADI-S warrant further follow-up.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Refluxo Gastroesofágico , Hipercolesterolemia , Hipertensão , Obesidade Mórbida , Masculino , Feminino , Humanos , Adulto , Obesidade Mórbida/complicações , Diabetes Mellitus Tipo 2/complicações , Estudos Retrospectivos , Hipercolesterolemia/complicações , Íleo/cirurgia , Obesidade/complicações , Anastomose Cirúrgica/efeitos adversos , Gastrectomia/efeitos adversos , Hipertensão/complicações , Redução de Peso/fisiologia , Refluxo Gastroesofágico/complicações , Derivação Gástrica/efeitos adversos , Resultado do Tratamento
5.
J Robot Surg ; 18(1): 92, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400999

RESUMO

Although prior studies have discussed learning curves (LC) of robotic-assisted pancreaticoduodenectomy (RPD), a recognized definition is lacking. This study analyzed the clinical outcomes of 85 consecutive RPD cases performed by a single surgeon to evaluate the safety and learning curve of RPD using the da Vinci Xi robotic system. There were 51 male and 34 female patients, with a median age of 64 (20-87) years. The average preoperative body weight and BMI were 64.15 ± 11.43 kg and 23.36 ± 3.33 kg/m2, respectively. The clinical outcomes of each patient were analyzed using the textbook outcome(TO), and the learning curve of the RPD was evaluated by calculating the TO rate of patients using the cumulative sum analysis method (CUSUM).The operation time (OT) was 288.92 ± 44.41 min, and the postoperative hospital stay was 10 (1-134) days. In total, 23.52% (20/85), 5.88% (5/85), 2.35% (2/85), and 5.9% (5/85) experienced grade IIIa, IIIb, IV, and V complications. A total of 46 patients achieved TO outcomes (TO group), while 39 did not (non-TO group). The smoking rate in the TO group was lower (P < 0.05) and the albumin level was higher (P < 0.05) than that in the non-TO group. The TO rate became positive after the 56th case, all patients were divided into a learning improvement group (56 cases) and a proficient group (29 cases). The total bilirubin level in the learning improvement group was lower (P < 0.05) and the bleeding volume was higher (P < 0.05).RPD is safe and effective for carefully selected patients. The learning curve was completed after 56 patients.


Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Cirurgiões , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Pancreaticoduodenectomia/efeitos adversos , Curva de Aprendizado , Procedimentos Cirúrgicos Robóticos/métodos , Estudos Retrospectivos
6.
MycoKeys ; 101: 233-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313215

RESUMO

In this study, two new species, Rhizoplacaadpressa Y. Y. Zhang & Li S. Wang and R.auriculata Y. Y. Zhang, Li S. Wang & Printzen, are described from Southwest China, based on their morphology, phylogeny and chemistry. In phylogeny, the two new species are monophyletic, and sister to each other within Rhizoplacachrysoleuca-complex. Rhizoplacaadpressa is characterized by its placodioid and closely adnate thallus, pale green and heavily pruinose upper surface, narrow (ca. 1 mm) and white free margin on the lower surface of marginal squamules, the absence of a lower cortex, and its basally non-constricted apothecia with orange discs that turn reddish-brown at maturity. Rhizoplacaauriculata is characterized by its squamulose to placodioid thallus, yellowish green and marginally pruinose squamules, wide (1-3 mm) and bluish-black free margin on the lower surface of marginal squamules, the absence of a lower cortex, and its basally constricted apothecia with persistently orange discs. Rhizoplacaadpressa and R.auriculata share the same secondary metabolites of usnic and placodiolic acids.

7.
J Org Chem ; 89(3): 1873-1879, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38241606

RESUMO

An efficient method for the first ene-reaction of 2-aryl-3H-indol-3-ones with allyltrimethylsilane has been developed for the first time. The reaction proceeded under the catalysis of Pd(OAc)2 and chiral phosphoric ligand L11 in the presence of Cu(CF3COO)2·XH2O, PivOH, and 5 Å molecular sieves in DMSO at 60 °C. The present methodology can avoid the impact of amine products generated by the reaction on the catalyst, and at the same time, the high catalytic activity of classical palladium catalysts still has catalytic ability for low electrophilic keto-imines. The desired products were furnished in excellent yields with good enantioselectivity.

8.
Phytomedicine ; 124: 155263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181532

RESUMO

BACKGROUND: Anomalous activation of NF-κB signaling is associated with many inflammatory disorders, such as ulcerative colitis (UC) and acute lung injury (ALI). NF-κB activation requires the ubiquitination of receptor-interacting protein 1 (RIP1) and NF-κB essential modulator (NEMO). Therefore, inhibition of ubiquitation of RIP1 and NEMO may serve as a potential approach for inhibiting NF-κB activation and alleviating inflammatory disorders. PURPOSE: Here, we identified arteannuin B (ATB), a sesquiterpene lactone found in the traditional Chinese medicine Artemisia annua that is used to treat malaria and inflammatory diseases, as a potent anti-inflammatory compound, and then characterized the putative mechanisms of its anti-inflammatory action. METHODS: Detections of inflammatory mediators and cytokines in LPS- or TNF-α-stimulated murine macrophages using RT-qPCR, ELISA, and western blotting, respectively. Western blotting, CETSA, DARTS, MST, gene knockdown, LC-MS/MS, and molecular docking were used to determine the potential target and molecular mechanism of ATB. The pharmacological effects of ATB were further evaluated in DSS-induced colitis and LPS-induced ALI in vivo. RESULTS: ATB effectively diminished the generation of NO and PGE2 by down-regulating iNOS and COX2 expression, and decreased the mRNA expression and release of IL-1ß, IL-6, and TNF-α in LPS-exposed RAW264.7 macrophages. The anti-inflammatory effect of ATB was further demonstrated in LPS-treated BMDMs and TNF-α-activated RAW264.7 cells. We further found that ATB obviously inhibited NF-κB activation induced by LPS or TNF-α in vitro. Moreover, compared with ATB, dihydroarteannuin B (DATB) which lost the unsaturated double bond, completely failed to repress LPS-induced NO release and NF-κB activation in vitro. Furthermore, UBE2D3, a ubiquitin-conjugating enzyme, was identified as the functional target of ATB, but not DATB. UBE2D3 knockdown significantly abolished ATB-mediated inhibition on LPS-induced NO production. Mechanistically, ATB could covalently bind to the catalytic cysteine 85 of UBE2D3, thereby inhibiting the function of UBE2D3 and preventing ubiquitination of RIP1 and NEMO. In vivo, ATB treatment exhibited robust protective effects against DSS-induced UC and LPS-induced ALI. CONCLUSION: Our findings first demonstrated that ATB exerted anti-inflammatory functions by repression of NF-κB pathway via covalently binding to UBE2D3, and raised the possibility that ATB could be effective in the treatment of inflammatory diseases and other diseases associated with abnormal NF-κB activation.


Assuntos
Artemisia annua , Artemisininas , Colite Ulcerativa , Animais , Camundongos , NF-kappa B/metabolismo , Enzimas de Conjugação de Ubiquitina , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Lactonas , Inflamação/metabolismo
9.
Curr Vasc Pharmacol ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38141195

RESUMO

INTRODUCTION: Myocardial ischaemia reperfusion injury (MIRI) determines infarct size and long-term outcomes after acute myocardial infarction (AMI). Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, alleviates MIRI in animal models. METHOD: We investigated the potential mechanisms underlying the cardioprotective effect of dapagliflozin against MIRI, focusing on mitochondrial injury and mitophagy. MIRI mouse and H9C2 cell models were established. RESULTS: 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed a significant alleviation of MIRI after pre-treatment of dapagliflozin compared to the model group (14.91±1.76 vs. 40.47±3.69%). Data from the pre-treatment dapagliflozin group showed a significant decrease in left ventricular ejection fraction (LVEF) (44.8±2.7 vs. 28.5±5.3%, P<0.01), left ventricular end-diastolic volume (LVEDV) (70.6±9.5 vs. 93.5±13.8 ul, P<0.05), and left ventricular end-systolic volume (LVESV) (39.0± 8.3 vs. 67.9±13.7 ul, P<0.05) compared to the model group. Dapagliflozin also reduced the levels of reactive oxygen species (ROS) and fragmented mitochondrial DNA, reversed the decrease in mitochondrial membrane potential, and suppressed apoptosis. Further study showed that dapagliflozin could protect against mitochondrial injury by rapidly clearing damaged mitochondria via mitophagy in a phosphatase and tensin homologue (PTEN)-induced putative kinase 1 (PINK1)/parkindependent manner. Dapagliflozin regulated mitophagy in cardiomyocytes by suppressing the adenosine 5'monophosphate-activated protein kinase (AMPK)-PINK1/parkin signalling pathway, resulting in attenuated MIRI. CONCLUSION: Dapagliflozin alleviated MIRI by activating mitophagy via the AMPK-PINK1/parkin signalling pathway.

10.
Biophys Rep ; 9(3): 134-145, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38028149

RESUMO

Increased glycolysis for promoting adenosine triphosphate (ATP) generation is one of the hallmarks of cancer. Although reducing glucose intake or depriving cellular glucose can delay the growth of tumors to some extent, their therapeutic efficacy is a highly needed improvement for clinical translation. Herein, we found that mannose synergistic with glucose oxidase (GOx) can induce cell death by ATP inhibition, autophagy activation, and apoptosis protein upgradation. By using biodegradable zeolitic imidazolate frameworks (ZIF-8) as a nanocarrier (denoted as ZIF-8/M&G), the mannose and GOx can accumulate at the tumor site while having no obvious long-term toxicity. At the tumor site, GOx inhibits glycolysis by converting glucose and oxygen to H 2O 2 and gluconic acid, realizing oxidation therapy and expediting the degradation of the pH-responsive ZIF-8 nanoparticles, respectively. Simultaneously, mannose disturbs sugar metabolism and reduces oxygen consumption, which in turn promotes the GOx oxidation process. The concerted glycolysis inhibition through interactions between mannose and GOx endows ZIF-8/M&G nanospolier with excellent therapeutic efficacy both in vitro and in vivo. Synergistic glycolysis disturbance by the designed nanospoiler in this work proposes a versatile approach for metabolism disturbance to tumor treatment.

11.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2703-2712, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37897277

RESUMO

Understanding the effects of upslope runoff and soil pipe collapse on slope water erosion can provide scien-tific basis for preventing Mollisol degradation caused by soil erosion. We conducted an experiment to investigate the effects of upslope inflow rate and soil pipe collapse on slope water erosion and to quantify the contribution of soil pipe erosion to slope soil erosion. The experiment included three inflow rates (30, 40, and 50 L·min-1) and three near-surface soil hydrological conditions (without soil pipe: NP; with soil pipe but no pipe flow: PF0; with pipe flow: PF1). The results showed that: 1) Slope soil erosion increased with increasing inflow rates; when the inflow rate increased from 30 L·min-1 to 40 and 50 L·min-1, slope soil erosion increased by 100.0%-111.5% and 214.8%-289.2%, respectively. 2) The soil pipe occurrence and pipe flow formation aggravated the slope water erosion process. At inflow rates of 30, 40, and 50 L·min-1, slope soil loss under the PF0 and PF1 treatments were 1.4-1.6 times and 1.7-2.1 times of that under the NP treatment. The contribution of soil pipe erosion to slope soil loss was 26.7%-37.6% under the PF0 treatment and 40.5%-51.9% under the PF1 treatment. 3) Soil pipe collapse intensified the rill erosion process. Compared with the NP treatment at 30, 40, and 50 L·min-1 inflow rate, rill erosion amounts under the PF0 and PF1 treatments increased by 38.1%-66.0% and by 93.7%-128.4%, respectively. Our results suggested that increasing upslope inflow rate resulted in higher surface runoff velocity, which promoted runoff detachment and transport capacity, and then aggrandized the amount of slope soil erosion. Moreover, soil pipe collapse exacerbated rill erosion process. When the soil pipe collapsed, all surface runoff was converted to soil pipe flow, which accelerated flow velocity and slope soil erosion process, and then increased the amount of slope soil erosion.


Assuntos
Solo , Água , China , Sedimentos Geológicos , Chuva , Movimentos da Água
12.
Nat Genet ; 55(11): 1964-1975, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783780

RESUMO

The orange subfamily (Aurantioideae) contains several Citrus species cultivated worldwide, such as sweet orange and lemon. The origin of Citrus species has long been debated and less is known about the Aurantioideae. Here, we compiled the genome sequences of 314 accessions, de novo assembled the genomes of 12 species and constructed a graph-based pangenome for Aurantioideae. Our analysis indicates that the ancient Indian Plate is the ancestral area for Citrus-related genera and that South Central China is the primary center of origin of the Citrus genus. We found substantial variations in the sequence and expression of the PH4 gene in Citrus relative to Citrus-related genera. Gene editing and biochemical experiments demonstrate a central role for PH4 in the accumulation of citric acid in citrus fruits. This study provides insights into the origin and evolution of the orange subfamily and a regulatory mechanism underpinning the evolution of fruit taste.


Assuntos
Citrus sinensis , Citrus , Citrus/genética , Citrus/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Ácido Cítrico/metabolismo , Frutas/genética , China
13.
Plant Sci ; 337: 111880, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37778469

RESUMO

Radish is one of the most economical root vegetable crops worldwide. Cold stress dramatically impedes radish taproot formation and development as well as reduces its yield and quality. Although the Cycling Dof Factors (CDFs) play crucial roles in plant growth, development and abiotic stress responses, how CDF TFs mediate the regulatory network of cold stress response remains largely unexplored in radish. Herein, a total of nine RsCDF genes were identified from the radish genome. Among them, the RsCDF3 exhibited obviously up-regulated expression under cold stress, especially at 12 h and 24 h. RsCDF3 was localized to the nucleus and displayed dramatic cold-induced promoter activity in tobacco leaves. Moreover, overexpression of RsCDF3 significantly enhanced cold tolerance of radish plants, whereas its knock-down plants exhibited the opposite phenotype. Interestingly, both in vitro and in vivo assays indicated that the RsCDF3 repressed the transcription of RsRbohA and RsRbohC via directly binding to their promoters, which contributed to maintaining the cellular homeostasis of reactive oxygen species (ROS) production and scavenging in radish. In addition, the RsCDF3 bound to its own promoter to mediate its transcription, thereby forming an autoregulatory feedback loop to cooperatively trigger RsRbohs-dependent cold tolerance. Together, we revealed a novel RsCDF3-RsRbohs module to promote the cold tolerance in radish plants. These findings would facilitate unveiling the molecular mechanism governing RsCDF3-mediated cold stress response in radish.

14.
Int Immunopharmacol ; 124(Pt B): 110965, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741124

RESUMO

Isolinderalactone is the main sesquiterpene lactone isolated from Lindera aggregata, a traditional Chinese medicine widely used to treat pain and inflammation. Although isolinderalactone has been demonstrated to possess anti-cancer effect, its anti-inflammatory activity and underlying mechanism has not been well characterized. Herein, isolinderalactone was able to significantly inhibit the production of NO and PGE2 by reducing the expressions of iNOS and COX2 in LPS-stimulated RAW264.7 macrophages and BMDMs, and decreased the mRNA levels of IL-1ß, IL-6, and TNF-α in LPS-induced RAW264.7 cells. In vivo, isolinderalactone effectively alleviated LPS-induced acute lung injury (ALI), which manifested as reduction in pulmonary inflammatory infiltration, myeloperoxidase activity, and production of PGE2, IL-1ß, IL-6, TNF-α, and malondialdehyde. Furthermore, isolinderalactone inhibited phosphorylation of IKKα/ß, phosphorylation and degradation of IκBα, and nuclear translocation of NF-κB p65, thereby blocking NF-κB pro-inflammatory pathway. Meanwhile, isolinderalactone reduced the intracellular ROS through promoting the activation of Nrf2-HMOX1 antioxidant axis. By using drug affinity responsive target stability assay and molecular docking, isolinderalactone was found to covalently interact with IKKα/ß and Keap1, which may contribute to its anti-inflammatory action. Additionally, a thiol donor ß-mercaptoethanol significantly abolished isolinderalactone-mediated anti-inflammatory action in vitro, indicating the crucial role of the unsaturated lactone of isolinderalactone on its anti-inflammatory effects. Taken together, isolinderalactone protected against LPS-induced ALI in mice, which may be associated with its inhibition of NF-κB pathway and activation of Nrf2 signaling in macrophages.


Assuntos
Lesão Pulmonar Aguda , Sesquiterpenos , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Anti-Inflamatórios/farmacologia , Quinase I-kappa B/metabolismo , Interleucina-6/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lactonas/farmacologia , Lactonas/uso terapêutico , Lactonas/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
15.
Thromb Res ; 229: 114-126, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437517

RESUMO

Myocardial ischemia-reperfusion injury (MIRI), the joint result of ischemic injury and reperfusion injury, is associated with poor outcomes in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Accumulating evidence demonstrates that activated platelets directly contribute to the pathogenesis of MIRI through participating in the formation of microthrombi, interaction with leukocytes, secretion of active substances, constriction of microvasculature, and activation of spinal afferent nerves. The molecular mechanisms underlying the above detrimental effects of activated platelets include the homotypic and heterotypic interactions through surface receptors, transduction of intracellular signals, and secretion of active substances. Revealing the roles of platelet activation in MIRI and the associated mechanisms would provide potential targets/strategies for the clinical evaluation and treatment of MIRI. Further studies are needed to characterize the temporal (ischemia phase vs. reperfusion phase) and spatial (systemic vs. local) distributions of platelet activation in MIRI by multi-omics strategies. To improve the likelihood of translating novel cardioprotective interventions into clinical practice, basic researches maximally replicating the complexity of clinical scenarios would be necessary.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Plaquetas/patologia , Infarto do Miocárdio/etiologia , Ativação Plaquetária , Leucócitos/patologia
16.
Plant Sci ; 334: 111768, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343602

RESUMO

Radish (Raphanus sativus L.) is an economically important and widely cultivated root vegetable crop. The coloration of the green skin and green flesh is an important trait influencing the nutrition and flavor quality in fruit radish. GOLDEN2-LIKEs (GLKs) play critically important roles in plastid development and chlorophyll biosynthesis in plants. However, the molecular mechanism underlying chlorophyll biosynthesis still remain elusive in green fruit radish taproot. Herein, the RsGLK2.1 gene exhibited higher expression level in taproot with a green skin (GS) and green flesh (GF) than that in taproot of the white or red radish genotypes. RsGLK2.1 is a nuclear transcription factor that has intrinsic transcriptional activation activity. Overexpression of RsGLK2.1 increased the total chlorophyll content of 20.68%-45.84% in radish leaves. Knockout of the RsGLK2.1 gene via CRISPR/Cas9 technology resulted in a significant decrease in the chlorophyll content. Overexpression of the RsGLK2.1 gene could restore the phenotype of the glk1glk2 mutant Arabidopsis. RsGLK2.1 was participated in regulating the chlorophyll biosynthesis by directly binding to the promoter of RsHEMA2 and activating its transcription. The interaction of RsNF-YA9a with RsGLK2.1 increased the transcriptional activity of the downstream gene RsHEMA2 under the light condition rather than the dark condition, indicating that both of them regulate the chlorophyll biosynthesis in a light-dependent manner of radish. Overall, these results provided insights into the molecular framework of the RsGLK2.1-RsNF-YA9a module, and could facilitate dissecting the regulatory mechanism underlying chlorophyll biosynthesis in green taproot of radish, and genetic improvement of quality traits in fruit radish breeding programs.


Assuntos
Proteínas de Plantas , Raphanus , Raphanus/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
17.
Phytother Res ; 37(10): 4587-4606, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37353982

RESUMO

Ferroptosis, an iron-dependent cell death characterized by lethal lipid peroxidation, is involved in chronic obstructive pulmonary disease (COPD) pathogenesis. Therefore, ferroptosis inhibition represents an attractive strategy for COPD therapy. Herein, we identified natural flavonoid scutellarein as a potent ferroptosis inhibitor for the first time, and characterized its underlying mechanisms for inhibition of ferroptosis and COPD. In vitro, the anti-ferroptotic activity of scutellarein was investigated through CCK8, real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, flow cytometry, and transmission electron microscope (TEM). In vivo, COPD was induced by lipopolysaccharide (LPS)/cigarette smoke (CS) and assessed by changes in histopathological, inflammatory, and ferroptotic markers. The mechanisms were investigated by RNA-sequencing (RNA-seq), electrospray ionization mass spectra (ESI-MS), local surface plasmon resonance (LSPR), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), and molecular dynamics. Our results showed that scutellarein significantly inhibited Ras-selective lethal small molecule (RSL)-3-induced ferroptosis and mitochondria injury in BEAS-2B cells, and ameliorated LPS/CS-induced COPD in mice. Furthermore, scutellarein also repressed RSL-3- or LPS/CS-induced lipid peroxidation, GPX4 down-regulation, and overactivation of Nrf2/HO-1 and JNK/p38 pathways. Mechanistically, scutellarein inhibited RSL-3- or LPS/CS-induced Fe2+ elevation through directly chelating Fe2+ . Moreover, scutellarein bound to the lipid peroxidizing enzyme arachidonate 15-lipoxygenase (ALOX15), which resulted in an unstable state of the catalysis-related Fe2+ chelating cluster. Additionally, ALOX15 overexpression partially abolished scutellarein-mediated anti-ferroptotic activity. Our findings revealed that scutellarein alleviated COPD by inhibiting ferroptosis via directly chelating Fe2+ and interacting with ALOX15, and also highlighted scutellarein as a candidate for the treatment of COPD and other ferroptosis-related diseases.


Assuntos
Apigenina , Ferroptose , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Lipopolissacarídeos , Doença Pulmonar Obstrutiva Crônica/patologia , Quelantes de Ferro , Ferro
18.
Eur J Pharmacol ; 954: 175840, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37302524

RESUMO

Necroptosis, a new form of programmed cell death, is involved in the pathogenesis of ulcerative colitis (UC). Inhibition of necroptosis represents an attractive strategy for UC therapy. Herein, cardamonin, a natural chalcone isolated from Zingiberaceae family, was firstly identified as a potent necroptosis inhibitor. In vitro, cardamonin significantly inhibited necroptosis in TNF-α plus Smac mimetic and z-VAD-FMK (TSZ)-, cycloheximide plus TZ (TCZ)-, or lipopolysaccharide plus SZ (LSZ)-stimulated HT29, L929, or RAW264.7 cell lines. Furthermore, TSZ-induced elevated population of necrotic cells, release of LDH and HMGB1 also could be inhibited by cardamonin in HT29 cells. Cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) assay combined with molecular docking demonstrated that cardamonin interacted with RIPK1/3. Furthermore, cardamonin blocked the phosphorylation of RIPK1/3, thereby disrupting RIPK1-RIPK3 necrosome formation and MLKL phosphorylation. In vivo, orally administration of cardamonin attenuated dextran sulfate sodium (DSS)-induced colitis, which mainly manifested as mitigated intestinal barrier damage, suppressed necroinflammation, and reduced phosphorylation of MLKL. Taken together, our findings revealed that dietary cardamonin is a novel necroptosis inhibitor and has great potential for UC therapy by targeting RIPK1/3 kinases.


Assuntos
Chalcona , Chalconas , Colite Ulcerativa , Colite , Humanos , Chalconas/farmacologia , Chalconas/uso terapêutico , Sulfato de Dextrana/toxicidade , Chalcona/uso terapêutico , Necroptose , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
19.
Eur J Med Chem ; 256: 115469, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37178481

RESUMO

Salt-inducible kinases (SIKs) play a crucial role in inflammation process, acting as molecular switches that regulate the transformation of M1/M2 macrophages. HG-9-91-01 is a SIKs inhibitor with potent inhibitory activity against SIKs in the nanomolar range. However, its poor drug-like properties, including a rapid elimination rate, low in vivo exposure and high plasma protein binding rate, have hindered further research and clinical application. To improve the drug-like properties of HG-9-91-01, a series of pyrimidine-5-carboxamide derivatives were designed and synthesized through a molecular hybridization strategy. The most promising compound 8h was obtained with favorable activity and selectivity on SIK1/2, excellent metabolic stability in human liver microsome, enhanced in vivo exposure and suitable plasma protein binding rate. Mechanism research showed that compound 8h significantly up-regulated the expression of anti-inflammatory cytokine IL-10 and reduced the expression of pro-inflammatory cytokine IL-12 in bone marrow-derived macrophages. Furthermore, it significantly elevated expression of cAMP response element-binding protein (CREB) target genes IL-10, c-FOS and Nurr77. Compound 8h also induced the translocation of CREB-regulated transcriptional coactivator 3 (CRTC3) and elevated the expression of LIGHT, SPHK1 and Arginase 1. Additionally, compound 8h demonstrated excellent anti-inflammatory effects in a DSS-induced colitis model. Generally, this research indicated that compound 8h has the potential to be developed as an anti-inflammatory drug candidate.


Assuntos
Doenças Inflamatórias Intestinais , Interleucina-10 , Humanos , Citocinas/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Proteínas Serina-Treonina Quinases , Pirimidinas/química
20.
Angew Chem Int Ed Engl ; 62(24): e202304073, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37042024

RESUMO

In the past decades click chemistries including thiol chemistries have found wide applications in the synthesis of well-defined polymers. In this research, a click-declick strategy based on the oxidation of heteroaromatic thioethers and the substitution reactions between the oxidized groups and thiols, is proposed for the synthesis of the cleavable polymers. In proof-of-concept experiments, block copolymers (BCPs) and star-like polymers are synthesized by thiol-phenylsulfone substitution reactions, and heteroaromatic thioethers are produced at the junction points of the BCP chains or on the crosslinking sites of the star-like polymer. The thioethers can be oxidized to heteroaromatic sulfoxides or sulfones, depending on the oxidization condition. It is demonstrated that both sulfoxides or sulfones can have base catalyzed nucleophilic substitution reactions with thiols, leading to the cleavage of the polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...